Probability and Monte Carlo methods

Um bom texto de introdução à probabilidade e simulação de Monte-Carlo

Um bom texto de introdução à probabilidade e simulação de Monte-Carlo

This is a lecture post for my students in the CUNY MS Data Analytics program. In this series of lectures I discuss mathematical concepts from different perspectives. The goal is to ask questions and challenge standard ways of thinking about what are generally considered basic concepts. I also emphasize using programming to help gain insight into mathematics. Consequently these lectures will not always be as rigorous as they could be.

Tags

, , ,

Tags: , ,

Machine Learning

Um bom curso video de machine learning

Um bom curso video de machine learning

About the Course

Machine learning algorithms can figure out how to perform important tasks by generalizing from examples. This is often feasible and cost-effective when manual programming is not. Machine learning (also known as data mining, pattern recognition and predictive analytics) is used widely in business, industry, science and government, and  there is a great shortage of experts in it. If you pick up a machine learning textbook you may find it forbiddingly mathematical, but in this class you will learn that the key ideas and algorithms are in fact quite intuitive. And powerful!
Most of the class will be devoted to supervised learning (in other words, learning in which a teacher provides the learner with the correct answers at training time). This is the most mature and widely used type of machine learning. We will cover the main supervised learning techniques, including decision trees, rules, instances, Bayesian techniques, neural networks, model ensembles, and support vector machines. We will also touch on learning theory with an emphasis on its practical uses. Finally, we will cover the two main classes of unsupervised learning methods: clustering and dimensionality reduction. Throughout the class there will be an emphasis not just on individual algorithms but on ideas that cut across them and tips for making them work.
In the class projects you will build your own implementations of machine learning algorithms and apply them to problems like spam filtering, clickstream mining, recommender systems, and computational biology. This will get you as close to becoming a machine learning expert as you can in ten weeks!

Course Syllabus

Week One: Basic concepts in machine learning.
Week Two: Decision tree induction.
Week Three: Learning sets of rules and logic programs.
Week Four: Instance-based learning.
Week Five: Statistical learning.
Week Six: Neural networks.
Week Seven: Model ensembles.
Week Eight: Learning theory.
Week Nine: Support vector machines.
Week Ten: Clustering and dimensionality reduction.

Tags: ,

Machine Learning MOOC

Um curso muito completo de machine learning

Um curso muito completo de machine learning

About the Course

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. Many researchers also think it is the best way to make progress towards human-level AI. In this class, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work for yourself. More importantly, you’ll learn about not only the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, you’ll learn about some of Silicon Valley’s best practices in innovation as it pertains to machine learning and AI.

This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you’ll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas.

FAQ

  • What is the format of the class?The class will consist of lecture videos, which are broken into small chunks, usually between eight and twelve minutes each. Some of these may contain integrated quiz questions. There will also be standalone quizzes that are not part of video lectures, and programming assignments.
  • How much programming background is needed for the course?The course includes programming assignments and some programming background will be helpful.
  • Do I need to buy a textbook for the course?No, it is self-contained.
  • Will I get a statement of accomplishment after completing this class?Yes. Students who successfully complete the class will receive a statement of accomplishment signed by the instructor.

Tags: , , , ,

Data Mining with Weka MOOC

Um curso em vídeo sobre a utilização do WEKA para data mining

Um curso em vídeo sobre a utilização do WEKA para data mining

Welcome to the free online course Data Mining with Weka

This 5 week MOOC introduced data mining concepts through practical experience with the free Weka tool.

The course featured:

The course will run again in early March 2014. To get notified about dates (enrolment, commencement), please subscribe to the announcement forum.

You can access the course material (videos, slides, etc) from here.

Tags: , ,

Paddy – design a multi-stage survey

Jogo sério para desenho de inquéritos

Jogo sério para desenho de inquéritos

This game is a rice survey based on an actual survey carried out in Sri Lanka. In a small district there are 10 villages with a total of 160 farmers who each have one field in which to grow rice. A census of the area has been undertaken and the acreage cultivated by each farmer is known. There is now to be a crop cuttin survey whose main aim is to estimate the mean yield of rice per acre and hence the total production of rice in the district. The survey will also be used to investigate the use of fertilisers and the different varieties of rice used in the district.

The resources available allow for 30 plots to be sampled. The plots to be harvested are 1/80 acre but the yields are recorded in bushels per acre. Students use a multistage sampling scheme. For example:

  1. Select x villages
  2. From each village choose y fields
  3. Select z plots from each field

The game consists of 10 boxes each containing a number of envelopes, which themselves contain a number of slips of paper. The boxes represent a village so students select the boxes corresponding to their chosen villages. They open the boxes and select the envelopes labelled with their chosen field number. Information on the size of the field, the variety of rice used and the amount of fertiliser applied is also displayed on the envelope label. Finally, they select the slip of paper labelled with their chosen plot number and record the yield.

Tags: , ,

To the Woods – a detailed comparison of Sampling methods

Simulação para aprender amostragem simples e estratificada

Simulação para aprender amostragem simples e estratificada

To the Woods – a detailed comparison of Simple Random Sampling and Stratified Sampling

In this game the aim is to conduct a small survey to estimate the total number of trees in a forest and the proportion of large trees. A tree is considered ‘large’ if its diameter at breast height (DBH) is greater than 30cm. The area of forest from which the sample is to be taken is divided into two regions (‘East’ and ‘West’) by a river. Within each region it is possible to count the number of trees in any 50m x 50m plot. There are 168 plots in total – 96 to the West of the river and 72 to the East.

There are two alternative sampling solutions. Students take a sample of 14 plots and can either use simple random sampling or stratified sampling to choose them. They record the number of small trees, the number of large trees and the total number of trees for each of the 14 observations.

The game consists of 168 small pieces of card, which represent the plots, slipped into slits in a large piece of card representing the forest. A river can be drawn on the large piece of card to divide the forest into two regions. One side is labelled ‘West’ and the other ‘East’. The protruding sections of the plots are labelled with their region side (West or East) and plot number (1 to 96 and 1 to 72, respectively). The student pulls out the chosen plots and records the numbers of large and small trees, which is printed on the lower section of the plot.

Tags: ,

Tomato – jogo para aprender plano experimental

Software de simulação para perceber o desenho experimental

Software de simulação para perceber o desenho experimental

Tomato – a game to help understand the issues involved in experimental design

Tomato simulates an experiment to test the effect of different factors on the yield of tomatoes grown in a greenhouse. Students simulate the conduct of an experiment starting from the discussion of the appropriate design up to the conclusions. There are three factors (variety, heat, light), each at two levels (Coward/Doger, Standard/Supplementary, Standard/Supplementary). Students have to allocate the eight treatments to the 12 plots in the greenhouse. They are asked to take account of the different sides (North/South) of the greenhouse when allocating the treatments, which introduces a blocking factor. A second blocking factor, year, has also been built into the model; the experiment can be run over two years, resulting in two seasons of the crop. The players can decide which treatments to apply in the first year and use the results to determine which treatments to apply in the second year. Alternatively, they may choose to design the scheme for both years at the start. This means that the game incorporates blocking and the possibility of using unbalanced designs. It also introduces the factorial structure of the treatments.

Tags: ,

Rattle: A Graphical User Interface for Data Mining using R

togaware02Rattle (the R Analytical Tool To Learn Easily) presents statistical and visual summaries of data, transforms data into forms that can be readily modelled, builds both unsupervised and supervised models from the data, presents the performance of models graphically, and scores new datasets.

Tags: , , ,

Handbook of Statistical Analysis and Data Mining Applications

Livro completo no google books com as ligações entre a estatística e o DM

Livro completo no google books com as ligações entre a estatística e o DM

Índice

Tags: , ,

Data Mining for Business Intelligence

Livro completo no google books com boa introdução ao data mining

Livro completo no google books com boa introdução ao data mining

Índice

Tags: , , , ,